• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
WU Hao, HUA Jun, LIU Cheng, FAN Hao, XU Zhen-feng. Tensile Strength Prediction Model of Flax Fiber Reinforced Epoxy Resin Matrix Composite[J]. Materials and Mechanical Engineering, 2015, 39(7): 113-116. DOI: 10.11973/jxgccl201507024
Citation: WU Hao, HUA Jun, LIU Cheng, FAN Hao, XU Zhen-feng. Tensile Strength Prediction Model of Flax Fiber Reinforced Epoxy Resin Matrix Composite[J]. Materials and Mechanical Engineering, 2015, 39(7): 113-116. DOI: 10.11973/jxgccl201507024

Tensile Strength Prediction Model of Flax Fiber Reinforced Epoxy Resin Matrix Composite

More Information
  • Received Date: April 25, 2015
  • The flax fiber reinforced epoxy resin composite was prepared by the vacuum assisted resin transfer molding (VARTM) process,the effect of volume fraction of the fiber on tensile strength was studied.Kelly-Tyson tensile strength prediction model was modified and thus built a new tensile strength prediction model of the composite,and the prediction accuracy of the model was calculated.The results show that the tensile strength of the composite reached a peak (63.10 MPa) when the volume fraction of the fiber was 38.6%.The critical length of the fiber,the tensile strength and the fiber length effect factor were different because of the different shear strength.The prediction accuracy of the tensile strength prediction model was 97.8%.
  • [1]
    ROUISONA D,SAINB M,COUTURIERA M.Resin transfer molding of natural fiber reinforced composites:cure simulation[J].Compos Sci Technol,2004,64:629-644.
    [2]
    AZIZ S H,ANSELL M P,CLARKE S J,et al.Modified polyester resins for natural fiber composites[J].Compos Sci Technol,2005,65:525-535.
    [3]
    FENG D,CAULFIELD D F,SANADI A R.Effect of compatibilizer on the structure-property relationships of kenaf-fiber/ polypropylene composites[J].Polym Compos,2001,22:506-517.
    [4]
    张赋,李旭东.织物增强复合材料弹性常数的有限元法预测[J].机械工程材料,2014,38(4):82-86,95.
    [5]
    才红.表面处理方法对剑麻纤维/酚醛树脂复合材料性能的影响[J].机械工程材料,2010,34(3):15-18.
    [6]
    杨敏鸽,王琼,秦辉,等.苎麻增强环氧树脂复合材料的力学性能[J].机械工程材料,2012,36(6):68-71.
    [7]
    李小慧,金石磊,孙斓珲,等.聚酯纤维布增强环氧树脂基复合材料的拉伸和摩擦学性能[J].机械工程材料,2010,34(3):61-65,69.
    [8]
    郭明恩,孙祖莉,李峻,等.真空导入树脂模塑工艺对EKB1100/430LV复合材料纤维含量及力学性能的影响[J].机械工程材料,2012,36(5):38-41.
    [9]
    ASTM.D3039/D3039M-00 Standard test method for tensile properties of polymer matrix composite material[S].
    [10]
    GB 1447-1983玻璃纤维增强塑料拉伸性能试验方法[S].
    [11]
    GB 3357-1982单向纤维增强塑料层间剪切强度试验方法[S].
    [12]
    GARKHAIL S K,HEIJENRATH R W H,PEIJS T.Mechanical properties of natural-fibre-mat-reinforced thermoplastics based on flax fibres and polypropylene[J].Applied Composite Materials,2000,7(5/6):351-372.
    [13]
    FUKUDA H,CHOU T W.A probabilistic theory of the strength of short-fiber composites with variable fiber length and orientation[J].Journal of Material Science,1982,17:1003-1011.
    [14]
    PIPES R B.MCCULLOUGH R L,TAGGART G.Behavior of discontinuous fiber composites:fiber orientation[J].Polymer Composite,1982,3(1):34-37.
    [15]
    SANOMURA Y,HAYAKAWA K,MIZUNO M.Effects of process conditions on Young′s modulus and strength of extrudate inshort-fiber-reinforced polypropylene[J].Polym Compos,2007,28(1):29-35.
    [16]
    KELLY A,TYSON W R.Tensile properties of fibre-Reinforced metals:copper/tungsten and copper/ molybdenum[J].J Mech Phys Solids,1965,13:329-338.
  • Related Articles

    [1]PAN Yu, LÜ Yanming, ZHAO Peng, BAI Shaoyun, HUANG Qiang, LIU Haocheng. Welding Bead Forming Size Prediction for GH4169 Superalloy Wire Arc Additive Manufacturing[J]. Materials and Mechanical Engineering, 2023, 47(4): 97-102. DOI: 10.11973/jxgccl202304017
    [2]HOU Jun, WANG Xiaowei. Prediction Model of Combined High and Low Cycle Fatigue Life Considering Load Interaction[J]. Materials and Mechanical Engineering, 2023, 47(4): 83-87,102. DOI: 10.11973/jxgccl202304015
    [3]QIN Shenghuan, ZHAO Gang, SHUAI Tao, ZHANG Keshi. Improved Critical Plane Model for Multiaxial Fatigue Life Prediction of HRB335 Steel[J]. Materials and Mechanical Engineering, 2021, 45(11): 47-54,61. DOI: 10.11973/jxgccl202111010
    [4]YANG Pengfei, FAN Junling, NING Ning, SHI Junwei. Compressive Strength and Its Prediction Model of Carbon Fiber Reinforced Epoxy Resin Composite Plates with Different Porosities[J]. Materials and Mechanical Engineering, 2021, 45(6): 52-56. DOI: 10.11973/jxgccl202106009
    [5]ZHOU Xiaogang, JI Feifei. Fatigue Properties and Crack Growth Prediction Model of TC4Titanium Alloy Subjected to Multiple Laser Shot Peening[J]. Materials and Mechanical Engineering, 2021, 45(5): 100-104. DOI: 10.11973/jxgccl202105018
    [6]LIU Huiying, LI Weiwei. Creep Behavior of Silicone Rubber at Different Temperatures and Establishment of Viscoelastic Parameter Model with Variable Temperature[J]. Materials and Mechanical Engineering, 2020, 44(4): 78-82. DOI: 10.11973/jxgccl202004015
    [7]LEI Ze-hong, TU Yuan-qiang, ZHU Hong-chuan, QUAN Fang, ZHANG Wen-ying, YANG Jie. Forming Limit Curve for Sheet Plate Obtained by Measurement and Prediction of NADDRG Model[J]. Materials and Mechanical Engineering, 2015, 39(12): 102-106. DOI: 10.11973/jxgccl201512024
    [8]DING Zhi-ping, LI Ming, WANG Teng-fei, YANG Rong-hua. Low Cycle Fatigue Life Prediction for Ni-Based Single Crystal High Temperature Alloy Based on Unit Cell Model[J]. Materials and Mechanical Engineering, 2012, 36(6): 79-85.
    [9]SONG Dong-li, JIAO Si-hai. Validation of Hardness Prediction Mathematic Models[J]. Materials and Mechanical Engineering, 2008, 32(3): 29-31.
    [10]LI Chen, XU Xi-wu. Tensile Strength of Stitched Laminates[J]. Materials and Mechanical Engineering, 2006, 30(9): 10-12.

Catalog

    Article views (2) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return